3.8.96 \(\int \frac {x^4 \sqrt {c+d x^4}}{a+b x^4} \, dx\) [796]

3.8.96.1 Optimal result
3.8.96.2 Mathematica [C] (warning: unable to verify)
3.8.96.3 Rubi [A] (verified)
3.8.96.4 Maple [C] (warning: unable to verify)
3.8.96.5 Fricas [F]
3.8.96.6 Sympy [F]
3.8.96.7 Maxima [F]
3.8.96.8 Giac [F]
3.8.96.9 Mupad [F(-1)]

3.8.96.1 Optimal result

Integrand size = 24, antiderivative size = 700 \[ \int \frac {x^4 \sqrt {c+d x^4}}{a+b x^4} \, dx=\frac {x \sqrt {c+d x^4}}{3 b}-\frac {(b c-a d) \arctan \left (\frac {\sqrt {\frac {\sqrt {-a} \left (\frac {b c}{a}-d\right )}{\sqrt {b}}} x}{\sqrt {c+d x^4}}\right )}{4 b^2 \sqrt {-\frac {b c-a d}{\sqrt {-a} \sqrt {b}}}}-\frac {(b c-a d) \arctan \left (\frac {\sqrt {\frac {b c-a d}{\sqrt {-a} \sqrt {b}}} x}{\sqrt {c+d x^4}}\right )}{4 b^2 \sqrt {\frac {b c-a d}{\sqrt {-a} \sqrt {b}}}}+\frac {c^{3/4} (b c-2 a d) \left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{3 b \sqrt [4]{d} (b c+a d) \sqrt {c+d x^4}}-\frac {\left (\sqrt {b} \sqrt {c}+\sqrt {-a} \sqrt {d}\right ) (b c-a d) \left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} \operatorname {EllipticPi}\left (-\frac {\left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right )^2}{4 \sqrt {-a} \sqrt {b} \sqrt {c} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{8 b^2 \sqrt [4]{c} \left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) \sqrt [4]{d} \sqrt {c+d x^4}}-\frac {\left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) (b c-a d) \left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} \operatorname {EllipticPi}\left (\frac {\left (\sqrt {b} \sqrt {c}+\sqrt {-a} \sqrt {d}\right )^2}{4 \sqrt {-a} \sqrt {b} \sqrt {c} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{8 b^2 \sqrt [4]{c} \left (\sqrt {b} \sqrt {c}+\sqrt {-a} \sqrt {d}\right ) \sqrt [4]{d} \sqrt {c+d x^4}} \]

output
1/3*x*(d*x^4+c)^(1/2)/b-1/4*(-a*d+b*c)*arctan(x*((b*c/a-d)*(-a)^(1/2)/b^(1 
/2))^(1/2)/(d*x^4+c)^(1/2))/b^2/((a*d-b*c)/(-a)^(1/2)/b^(1/2))^(1/2)-1/4*( 
-a*d+b*c)*arctan(x*((-a*d+b*c)/(-a)^(1/2)/b^(1/2))^(1/2)/(d*x^4+c)^(1/2))/ 
b^2/((-a*d+b*c)/(-a)^(1/2)/b^(1/2))^(1/2)+1/3*c^(3/4)*(-2*a*d+b*c)*(cos(2* 
arctan(d^(1/4)*x/c^(1/4)))^2)^(1/2)/cos(2*arctan(d^(1/4)*x/c^(1/4)))*Ellip 
ticF(sin(2*arctan(d^(1/4)*x/c^(1/4))),1/2*2^(1/2))*(c^(1/2)+x^2*d^(1/2))*( 
(d*x^4+c)/(c^(1/2)+x^2*d^(1/2))^2)^(1/2)/b/d^(1/4)/(a*d+b*c)/(d*x^4+c)^(1/ 
2)-1/8*(-a*d+b*c)*(cos(2*arctan(d^(1/4)*x/c^(1/4)))^2)^(1/2)/cos(2*arctan( 
d^(1/4)*x/c^(1/4)))*EllipticPi(sin(2*arctan(d^(1/4)*x/c^(1/4))),1/4*(b^(1/ 
2)*c^(1/2)+(-a)^(1/2)*d^(1/2))^2/(-a)^(1/2)/b^(1/2)/c^(1/2)/d^(1/2),1/2*2^ 
(1/2))*(c^(1/2)+x^2*d^(1/2))*(b^(1/2)*c^(1/2)-(-a)^(1/2)*d^(1/2))*((d*x^4+ 
c)/(c^(1/2)+x^2*d^(1/2))^2)^(1/2)/b^2/c^(1/4)/d^(1/4)/(b^(1/2)*c^(1/2)+(-a 
)^(1/2)*d^(1/2))/(d*x^4+c)^(1/2)-1/8*(-a*d+b*c)*(cos(2*arctan(d^(1/4)*x/c^ 
(1/4)))^2)^(1/2)/cos(2*arctan(d^(1/4)*x/c^(1/4)))*EllipticPi(sin(2*arctan( 
d^(1/4)*x/c^(1/4))),-1/4*(b^(1/2)*c^(1/2)-(-a)^(1/2)*d^(1/2))^2/(-a)^(1/2) 
/b^(1/2)/c^(1/2)/d^(1/2),1/2*2^(1/2))*(c^(1/2)+x^2*d^(1/2))*(b^(1/2)*c^(1/ 
2)+(-a)^(1/2)*d^(1/2))*((d*x^4+c)/(c^(1/2)+x^2*d^(1/2))^2)^(1/2)/b^2/c^(1/ 
4)/d^(1/4)/(b^(1/2)*c^(1/2)-(-a)^(1/2)*d^(1/2))/(d*x^4+c)^(1/2)
 
3.8.96.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 10.44 (sec) , antiderivative size = 241, normalized size of antiderivative = 0.34 \[ \int \frac {x^4 \sqrt {c+d x^4}}{a+b x^4} \, dx=\frac {x \left (\frac {(2 b c-3 a d) x^4 \sqrt {1+\frac {d x^4}{c}} \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{2},1,\frac {9}{4},-\frac {d x^4}{c},-\frac {b x^4}{a}\right )}{a}+5 \left (c+d x^4+\frac {5 a^2 c^2 \operatorname {AppellF1}\left (\frac {1}{4},\frac {1}{2},1,\frac {5}{4},-\frac {d x^4}{c},-\frac {b x^4}{a}\right )}{\left (a+b x^4\right ) \left (-5 a c \operatorname {AppellF1}\left (\frac {1}{4},\frac {1}{2},1,\frac {5}{4},-\frac {d x^4}{c},-\frac {b x^4}{a}\right )+2 x^4 \left (2 b c \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{2},2,\frac {9}{4},-\frac {d x^4}{c},-\frac {b x^4}{a}\right )+a d \operatorname {AppellF1}\left (\frac {5}{4},\frac {3}{2},1,\frac {9}{4},-\frac {d x^4}{c},-\frac {b x^4}{a}\right )\right )\right )}\right )\right )}{15 b \sqrt {c+d x^4}} \]

input
Integrate[(x^4*Sqrt[c + d*x^4])/(a + b*x^4),x]
 
output
(x*(((2*b*c - 3*a*d)*x^4*Sqrt[1 + (d*x^4)/c]*AppellF1[5/4, 1/2, 1, 9/4, -( 
(d*x^4)/c), -((b*x^4)/a)])/a + 5*(c + d*x^4 + (5*a^2*c^2*AppellF1[1/4, 1/2 
, 1, 5/4, -((d*x^4)/c), -((b*x^4)/a)])/((a + b*x^4)*(-5*a*c*AppellF1[1/4, 
1/2, 1, 5/4, -((d*x^4)/c), -((b*x^4)/a)] + 2*x^4*(2*b*c*AppellF1[5/4, 1/2, 
 2, 9/4, -((d*x^4)/c), -((b*x^4)/a)] + a*d*AppellF1[5/4, 3/2, 1, 9/4, -((d 
*x^4)/c), -((b*x^4)/a)]))))))/(15*b*Sqrt[c + d*x^4])
 
3.8.96.3 Rubi [A] (verified)

Time = 1.51 (sec) , antiderivative size = 1002, normalized size of antiderivative = 1.43, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {978, 1021, 761, 925, 1541, 27, 761, 2221, 2223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4 \sqrt {c+d x^4}}{a+b x^4} \, dx\)

\(\Big \downarrow \) 978

\(\displaystyle \frac {x \sqrt {c+d x^4}}{3 b}-\frac {\int \frac {a c-(2 b c-3 a d) x^4}{\left (b x^4+a\right ) \sqrt {d x^4+c}}dx}{3 b}\)

\(\Big \downarrow \) 1021

\(\displaystyle \frac {x \sqrt {c+d x^4}}{3 b}-\frac {\frac {3 a (b c-a d) \int \frac {1}{\left (b x^4+a\right ) \sqrt {d x^4+c}}dx}{b}-\frac {(2 b c-3 a d) \int \frac {1}{\sqrt {d x^4+c}}dx}{b}}{3 b}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {x \sqrt {c+d x^4}}{3 b}-\frac {\frac {3 a (b c-a d) \int \frac {1}{\left (b x^4+a\right ) \sqrt {d x^4+c}}dx}{b}-\frac {\left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} (2 b c-3 a d) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 b \sqrt [4]{c} \sqrt [4]{d} \sqrt {c+d x^4}}}{3 b}\)

\(\Big \downarrow \) 925

\(\displaystyle \frac {x \sqrt {c+d x^4}}{3 b}-\frac {\frac {3 a (b c-a d) \left (\frac {\int \frac {1}{\left (1-\frac {\sqrt {b} x^2}{\sqrt {-a}}\right ) \sqrt {d x^4+c}}dx}{2 a}+\frac {\int \frac {1}{\left (\frac {\sqrt {b} x^2}{\sqrt {-a}}+1\right ) \sqrt {d x^4+c}}dx}{2 a}\right )}{b}-\frac {\left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} (2 b c-3 a d) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 b \sqrt [4]{c} \sqrt [4]{d} \sqrt {c+d x^4}}}{3 b}\)

\(\Big \downarrow \) 1541

\(\displaystyle \frac {x \sqrt {c+d x^4}}{3 b}-\frac {\frac {3 a (b c-a d) \left (\frac {\frac {\sqrt {d} \left (\sqrt {-a} \sqrt {b} \sqrt {c}+a \sqrt {d}\right ) \int \frac {1}{\sqrt {d x^4+c}}dx}{a d+b c}+\frac {\sqrt {b} \sqrt {c} \left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) \int \frac {\sqrt {d} x^2+\sqrt {c}}{\sqrt {c} \left (1-\frac {\sqrt {b} x^2}{\sqrt {-a}}\right ) \sqrt {d x^4+c}}dx}{a d+b c}}{2 a}+\frac {\frac {a \sqrt {d} \left (\frac {\sqrt {b} \sqrt {c}}{\sqrt {-a}}+\sqrt {d}\right ) \int \frac {1}{\sqrt {d x^4+c}}dx}{a d+b c}+\frac {\sqrt {b} \sqrt {c} \left (\sqrt {-a} \sqrt {d}+\sqrt {b} \sqrt {c}\right ) \int \frac {\sqrt {d} x^2+\sqrt {c}}{\sqrt {c} \left (\frac {\sqrt {b} x^2}{\sqrt {-a}}+1\right ) \sqrt {d x^4+c}}dx}{a d+b c}}{2 a}\right )}{b}-\frac {\left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} (2 b c-3 a d) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 b \sqrt [4]{c} \sqrt [4]{d} \sqrt {c+d x^4}}}{3 b}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {x \sqrt {c+d x^4}}{3 b}-\frac {\frac {3 a (b c-a d) \left (\frac {\frac {\sqrt {d} \left (\sqrt {-a} \sqrt {b} \sqrt {c}+a \sqrt {d}\right ) \int \frac {1}{\sqrt {d x^4+c}}dx}{a d+b c}+\frac {\sqrt {b} \left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) \int \frac {\sqrt {d} x^2+\sqrt {c}}{\left (1-\frac {\sqrt {b} x^2}{\sqrt {-a}}\right ) \sqrt {d x^4+c}}dx}{a d+b c}}{2 a}+\frac {\frac {a \sqrt {d} \left (\frac {\sqrt {b} \sqrt {c}}{\sqrt {-a}}+\sqrt {d}\right ) \int \frac {1}{\sqrt {d x^4+c}}dx}{a d+b c}+\frac {\sqrt {b} \left (\sqrt {-a} \sqrt {d}+\sqrt {b} \sqrt {c}\right ) \int \frac {\sqrt {d} x^2+\sqrt {c}}{\left (\frac {\sqrt {b} x^2}{\sqrt {-a}}+1\right ) \sqrt {d x^4+c}}dx}{a d+b c}}{2 a}\right )}{b}-\frac {\left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} (2 b c-3 a d) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 b \sqrt [4]{c} \sqrt [4]{d} \sqrt {c+d x^4}}}{3 b}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {x \sqrt {c+d x^4}}{3 b}-\frac {\frac {3 a (b c-a d) \left (\frac {\frac {\sqrt {b} \left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) \int \frac {\sqrt {d} x^2+\sqrt {c}}{\left (1-\frac {\sqrt {b} x^2}{\sqrt {-a}}\right ) \sqrt {d x^4+c}}dx}{a d+b c}+\frac {\sqrt [4]{d} \left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} \left (\sqrt {-a} \sqrt {b} \sqrt {c}+a \sqrt {d}\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{c} \sqrt {c+d x^4} (a d+b c)}}{2 a}+\frac {\frac {\sqrt {b} \left (\sqrt {-a} \sqrt {d}+\sqrt {b} \sqrt {c}\right ) \int \frac {\sqrt {d} x^2+\sqrt {c}}{\left (\frac {\sqrt {b} x^2}{\sqrt {-a}}+1\right ) \sqrt {d x^4+c}}dx}{a d+b c}+\frac {a \sqrt [4]{d} \left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} \left (\frac {\sqrt {b} \sqrt {c}}{\sqrt {-a}}+\sqrt {d}\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{c} \sqrt {c+d x^4} (a d+b c)}}{2 a}\right )}{b}-\frac {\left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} (2 b c-3 a d) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 b \sqrt [4]{c} \sqrt [4]{d} \sqrt {c+d x^4}}}{3 b}\)

\(\Big \downarrow \) 2221

\(\displaystyle \frac {x \sqrt {d x^4+c}}{3 b}-\frac {\frac {3 a (b c-a d) \left (\frac {\frac {a \left (\frac {\sqrt {b} \sqrt {c}}{\sqrt {-a}}+\sqrt {d}\right ) \sqrt [4]{d} \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{c} (b c+a d) \sqrt {d x^4+c}}+\frac {\sqrt {b} \left (\sqrt {b} \sqrt {c}+\sqrt {-a} \sqrt {d}\right ) \left (\frac {(-a)^{3/4} \left (\frac {\sqrt {b} \sqrt {c}}{\sqrt {-a}}-\sqrt {d}\right ) \arctan \left (\frac {\sqrt {b c-a d} x}{\sqrt [4]{-a} \sqrt [4]{b} \sqrt {d x^4+c}}\right )}{2 \sqrt [4]{b} \sqrt {b c-a d}}+\frac {\left (\sqrt {c}+\frac {\sqrt {-a} \sqrt {d}}{\sqrt {b}}\right ) \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticPi}\left (-\frac {\left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right )^2}{4 \sqrt {-a} \sqrt {b} \sqrt {c} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{c} \sqrt [4]{d} \sqrt {d x^4+c}}\right )}{b c+a d}}{2 a}+\frac {\frac {\left (\sqrt {d} a+\sqrt {-a} \sqrt {b} \sqrt {c}\right ) \sqrt [4]{d} \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{c} (b c+a d) \sqrt {d x^4+c}}+\frac {\sqrt {b} \left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) \int \frac {\sqrt {d} x^2+\sqrt {c}}{\left (1-\frac {\sqrt {b} x^2}{\sqrt {-a}}\right ) \sqrt {d x^4+c}}dx}{b c+a d}}{2 a}\right )}{b}-\frac {(2 b c-3 a d) \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 b \sqrt [4]{c} \sqrt [4]{d} \sqrt {d x^4+c}}}{3 b}\)

\(\Big \downarrow \) 2223

\(\displaystyle \frac {x \sqrt {d x^4+c}}{3 b}-\frac {\frac {3 a (b c-a d) \left (\frac {\frac {a \left (\frac {\sqrt {b} \sqrt {c}}{\sqrt {-a}}+\sqrt {d}\right ) \sqrt [4]{d} \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{c} (b c+a d) \sqrt {d x^4+c}}+\frac {\sqrt {b} \left (\sqrt {b} \sqrt {c}+\sqrt {-a} \sqrt {d}\right ) \left (\frac {(-a)^{3/4} \left (\frac {\sqrt {b} \sqrt {c}}{\sqrt {-a}}-\sqrt {d}\right ) \arctan \left (\frac {\sqrt {b c-a d} x}{\sqrt [4]{-a} \sqrt [4]{b} \sqrt {d x^4+c}}\right )}{2 \sqrt [4]{b} \sqrt {b c-a d}}+\frac {\left (\sqrt {c}+\frac {\sqrt {-a} \sqrt {d}}{\sqrt {b}}\right ) \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticPi}\left (-\frac {\left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right )^2}{4 \sqrt {-a} \sqrt {b} \sqrt {c} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{c} \sqrt [4]{d} \sqrt {d x^4+c}}\right )}{b c+a d}}{2 a}+\frac {\frac {\left (\sqrt {d} a+\sqrt {-a} \sqrt {b} \sqrt {c}\right ) \sqrt [4]{d} \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{c} (b c+a d) \sqrt {d x^4+c}}+\frac {\sqrt {b} \left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) \left (\frac {\sqrt [4]{-a} \left (\sqrt {b} \sqrt {c}+\sqrt {-a} \sqrt {d}\right ) \text {arctanh}\left (\frac {\sqrt {b c-a d} x}{\sqrt [4]{-a} \sqrt [4]{b} \sqrt {d x^4+c}}\right )}{2 \sqrt [4]{b} \sqrt {b c-a d}}+\frac {\left (\sqrt {c}-\frac {\sqrt {-a} \sqrt {d}}{\sqrt {b}}\right ) \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticPi}\left (\frac {\left (\sqrt {b} \sqrt {c}+\sqrt {-a} \sqrt {d}\right )^2}{4 \sqrt {-a} \sqrt {b} \sqrt {c} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{c} \sqrt [4]{d} \sqrt {d x^4+c}}\right )}{b c+a d}}{2 a}\right )}{b}-\frac {(2 b c-3 a d) \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 b \sqrt [4]{c} \sqrt [4]{d} \sqrt {d x^4+c}}}{3 b}\)

input
Int[(x^4*Sqrt[c + d*x^4])/(a + b*x^4),x]
 
output
(x*Sqrt[c + d*x^4])/(3*b) - (-1/2*((2*b*c - 3*a*d)*(Sqrt[c] + Sqrt[d]*x^2) 
*Sqrt[(c + d*x^4)/(Sqrt[c] + Sqrt[d]*x^2)^2]*EllipticF[2*ArcTan[(d^(1/4)*x 
)/c^(1/4)], 1/2])/(b*c^(1/4)*d^(1/4)*Sqrt[c + d*x^4]) + (3*a*(b*c - a*d)*( 
((a*((Sqrt[b]*Sqrt[c])/Sqrt[-a] + Sqrt[d])*d^(1/4)*(Sqrt[c] + Sqrt[d]*x^2) 
*Sqrt[(c + d*x^4)/(Sqrt[c] + Sqrt[d]*x^2)^2]*EllipticF[2*ArcTan[(d^(1/4)*x 
)/c^(1/4)], 1/2])/(2*c^(1/4)*(b*c + a*d)*Sqrt[c + d*x^4]) + (Sqrt[b]*(Sqrt 
[b]*Sqrt[c] + Sqrt[-a]*Sqrt[d])*(((-a)^(3/4)*((Sqrt[b]*Sqrt[c])/Sqrt[-a] - 
 Sqrt[d])*ArcTan[(Sqrt[b*c - a*d]*x)/((-a)^(1/4)*b^(1/4)*Sqrt[c + d*x^4])] 
)/(2*b^(1/4)*Sqrt[b*c - a*d]) + ((Sqrt[c] + (Sqrt[-a]*Sqrt[d])/Sqrt[b])*(S 
qrt[c] + Sqrt[d]*x^2)*Sqrt[(c + d*x^4)/(Sqrt[c] + Sqrt[d]*x^2)^2]*Elliptic 
Pi[-1/4*(Sqrt[b]*Sqrt[c] - Sqrt[-a]*Sqrt[d])^2/(Sqrt[-a]*Sqrt[b]*Sqrt[c]*S 
qrt[d]), 2*ArcTan[(d^(1/4)*x)/c^(1/4)], 1/2])/(4*c^(1/4)*d^(1/4)*Sqrt[c + 
d*x^4])))/(b*c + a*d))/(2*a) + (((Sqrt[-a]*Sqrt[b]*Sqrt[c] + a*Sqrt[d])*d^ 
(1/4)*(Sqrt[c] + Sqrt[d]*x^2)*Sqrt[(c + d*x^4)/(Sqrt[c] + Sqrt[d]*x^2)^2]* 
EllipticF[2*ArcTan[(d^(1/4)*x)/c^(1/4)], 1/2])/(2*c^(1/4)*(b*c + a*d)*Sqrt 
[c + d*x^4]) + (Sqrt[b]*(Sqrt[b]*Sqrt[c] - Sqrt[-a]*Sqrt[d])*(((-a)^(1/4)* 
(Sqrt[b]*Sqrt[c] + Sqrt[-a]*Sqrt[d])*ArcTanh[(Sqrt[b*c - a*d]*x)/((-a)^(1/ 
4)*b^(1/4)*Sqrt[c + d*x^4])])/(2*b^(1/4)*Sqrt[b*c - a*d]) + ((Sqrt[c] - (S 
qrt[-a]*Sqrt[d])/Sqrt[b])*(Sqrt[c] + Sqrt[d]*x^2)*Sqrt[(c + d*x^4)/(Sqrt[c 
] + Sqrt[d]*x^2)^2]*EllipticPi[(Sqrt[b]*Sqrt[c] + Sqrt[-a]*Sqrt[d])^2/(...
 

3.8.96.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 925
Int[1/(Sqrt[(a_) + (b_.)*(x_)^4]*((c_) + (d_.)*(x_)^4)), x_Symbol] :> Simp[ 
1/(2*c)   Int[1/(Sqrt[a + b*x^4]*(1 - Rt[-d/c, 2]*x^2)), x], x] + Simp[1/(2 
*c)   Int[1/(Sqrt[a + b*x^4]*(1 + Rt[-d/c, 2]*x^2)), x], x] /; FreeQ[{a, b, 
 c, d}, x] && NeQ[b*c - a*d, 0]
 

rule 978
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[e^(n - 1)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)* 
((c + d*x^n)^q/(b*(m + n*(p + q) + 1))), x] - Simp[e^n/(b*(m + n*(p + q) + 
1))   Int[(e*x)^(m - n)*(a + b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[a*c*(m - n + 
 1) + (a*d*(m - n + 1) - n*q*(b*c - a*d))*x^n, x], x], x] /; FreeQ[{a, b, c 
, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && GtQ[q, 0] && GtQ[m - n 
 + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]
 

rule 1021
Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x 
_)^(n_)]), x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^n], x], x] + Simp[(b* 
e - a*f)/b   Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b, c, 
 d, e, f, n}, x]
 

rule 1541
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[ 
{q = Rt[c/a, 2]}, Simp[(c*d + a*e*q)/(c*d^2 - a*e^2)   Int[1/Sqrt[a + c*x^4 
], x], x] - Simp[(a*e*(e + d*q))/(c*d^2 - a*e^2)   Int[(1 + q*x^2)/((d + e* 
x^2)*Sqrt[a + c*x^4]), x], x]] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e 
^2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a]
 

rule 2221
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]) 
, x_Symbol] :> With[{q = Rt[B/A, 2]}, Simp[(-(B*d - A*e))*(ArcTan[Rt[c*(d/e 
) + a*(e/d), 2]*(x/Sqrt[a + c*x^4])]/(2*d*e*Rt[c*(d/e) + a*(e/d), 2])), x] 
+ Simp[(B*d + A*e)*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(4* 
d*e*q*Sqrt[a + c*x^4]))*EllipticPi[-(e - d*q^2)^2/(4*d*e*q^2), 2*ArcTan[q*x 
], 1/2], x]] /; FreeQ[{a, c, d, e, A, B}, x] && NeQ[c*d^2 - a*e^2, 0] && Po 
sQ[c/a] && EqQ[c*A^2 - a*B^2, 0] && PosQ[B/A] && PosQ[c*(d/e) + a*(e/d)]
 

rule 2223
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]) 
, x_Symbol] :> With[{q = Rt[B/A, 2]}, Simp[(-(B*d - A*e))*(ArcTanh[Rt[(-c)* 
(d/e) - a*(e/d), 2]*(x/Sqrt[a + c*x^4])]/(2*d*e*Rt[(-c)*(d/e) - a*(e/d), 2] 
)), x] + Simp[(B*d + A*e)*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^ 
2)]/(4*d*e*q*Sqrt[a + c*x^4]))*EllipticPi[-(e - d*q^2)^2/(4*d*e*q^2), 2*Arc 
Tan[q*x], 1/2], x]] /; FreeQ[{a, c, d, e, A, B}, x] && NeQ[c*d^2 - a*e^2, 0 
] && PosQ[c/a] && EqQ[c*A^2 - a*B^2, 0] && PosQ[B/A] && NegQ[c*(d/e) + a*(e 
/d)]
 
3.8.96.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 6.05 (sec) , antiderivative size = 303, normalized size of antiderivative = 0.43

method result size
risch \(\frac {x \sqrt {d \,x^{4}+c}}{3 b}-\frac {\frac {\left (3 a d -2 b c \right ) \sqrt {1-\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \sqrt {1+\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, F\left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, i\right )}{b \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}\, \sqrt {d \,x^{4}+c}}-\frac {3 \left (a d -b c \right ) a \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (\textit {\_Z}^{4} b +a \right )}{\sum }\frac {-\frac {\operatorname {arctanh}\left (\frac {2 d \,x^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+2 c}{2 \sqrt {\frac {-a d +b c}{b}}\, \sqrt {d \,x^{4}+c}}\right )}{\sqrt {\frac {-a d +b c}{b}}}+\frac {2 \underline {\hspace {1.25 ex}}\alpha ^{3} b \sqrt {1-\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \sqrt {1+\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \Pi \left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, \frac {i \sqrt {c}\, \underline {\hspace {1.25 ex}}\alpha ^{2} b}{\sqrt {d}\, a}, \frac {\sqrt {-\frac {i \sqrt {d}}{\sqrt {c}}}}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}}\right )}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}\, a \sqrt {d \,x^{4}+c}}}{\underline {\hspace {1.25 ex}}\alpha ^{3}}\right )}{8 b^{2}}}{3 b}\) \(303\)
elliptic \(\frac {x \sqrt {d \,x^{4}+c}}{3 b}+\frac {\left (-\frac {a d -b c}{b^{2}}-\frac {c}{3 b}\right ) \sqrt {1-\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \sqrt {1+\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, F\left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, i\right )}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}\, \sqrt {d \,x^{4}+c}}+\frac {a \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (a d -b c \right ) \left (-\frac {\operatorname {arctanh}\left (\frac {2 d \,x^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+2 c}{2 \sqrt {\frac {-a d +b c}{b}}\, \sqrt {d \,x^{4}+c}}\right )}{\sqrt {\frac {-a d +b c}{b}}}+\frac {2 \underline {\hspace {1.25 ex}}\alpha ^{3} b \sqrt {1-\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \sqrt {1+\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \Pi \left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, \frac {i \sqrt {c}\, \underline {\hspace {1.25 ex}}\alpha ^{2} b}{\sqrt {d}\, a}, \frac {\sqrt {-\frac {i \sqrt {d}}{\sqrt {c}}}}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}}\right )}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}\, a \sqrt {d \,x^{4}+c}}\right )}{\underline {\hspace {1.25 ex}}\alpha ^{3}}\right )}{8 b^{3}}\) \(305\)
default \(\frac {\frac {x \sqrt {d \,x^{4}+c}}{3}+\frac {2 c \sqrt {1-\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \sqrt {1+\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, F\left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, i\right )}{3 \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}\, \sqrt {d \,x^{4}+c}}}{b}-\frac {a \left (\frac {d \sqrt {1-\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \sqrt {1+\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, F\left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, i\right )}{b \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}\, \sqrt {d \,x^{4}+c}}-\frac {\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (a d -b c \right ) \left (-\frac {\operatorname {arctanh}\left (\frac {2 d \,x^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+2 c}{2 \sqrt {\frac {-a d +b c}{b}}\, \sqrt {d \,x^{4}+c}}\right )}{\sqrt {\frac {-a d +b c}{b}}}+\frac {2 \underline {\hspace {1.25 ex}}\alpha ^{3} b \sqrt {1-\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \sqrt {1+\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \Pi \left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, \frac {i \sqrt {c}\, \underline {\hspace {1.25 ex}}\alpha ^{2} b}{\sqrt {d}\, a}, \frac {\sqrt {-\frac {i \sqrt {d}}{\sqrt {c}}}}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}}\right )}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}\, a \sqrt {d \,x^{4}+c}}\right )}{\underline {\hspace {1.25 ex}}\alpha ^{3}}}{8 b^{2}}\right )}{b}\) \(368\)

input
int(x^4*(d*x^4+c)^(1/2)/(b*x^4+a),x,method=_RETURNVERBOSE)
 
output
1/3*x*(d*x^4+c)^(1/2)/b-1/3/b*((3*a*d-2*b*c)/b/(I/c^(1/2)*d^(1/2))^(1/2)*( 
1-I/c^(1/2)*d^(1/2)*x^2)^(1/2)*(1+I/c^(1/2)*d^(1/2)*x^2)^(1/2)/(d*x^4+c)^( 
1/2)*EllipticF(x*(I/c^(1/2)*d^(1/2))^(1/2),I)-3/8*(a*d-b*c)*a/b^2*sum(1/_a 
lpha^3*(-1/((-a*d+b*c)/b)^(1/2)*arctanh(1/2*(2*_alpha^2*d*x^2+2*c)/((-a*d+ 
b*c)/b)^(1/2)/(d*x^4+c)^(1/2))+2/(I/c^(1/2)*d^(1/2))^(1/2)*_alpha^3*b/a*(1 
-I/c^(1/2)*d^(1/2)*x^2)^(1/2)*(1+I/c^(1/2)*d^(1/2)*x^2)^(1/2)/(d*x^4+c)^(1 
/2)*EllipticPi(x*(I/c^(1/2)*d^(1/2))^(1/2),I*c^(1/2)/d^(1/2)*_alpha^2/a*b, 
(-I/c^(1/2)*d^(1/2))^(1/2)/(I/c^(1/2)*d^(1/2))^(1/2))),_alpha=RootOf(_Z^4* 
b+a)))
 
3.8.96.5 Fricas [F]

\[ \int \frac {x^4 \sqrt {c+d x^4}}{a+b x^4} \, dx=\int { \frac {\sqrt {d x^{4} + c} x^{4}}{b x^{4} + a} \,d x } \]

input
integrate(x^4*(d*x^4+c)^(1/2)/(b*x^4+a),x, algorithm="fricas")
 
output
integral(sqrt(d*x^4 + c)*x^4/(b*x^4 + a), x)
 
3.8.96.6 Sympy [F]

\[ \int \frac {x^4 \sqrt {c+d x^4}}{a+b x^4} \, dx=\int \frac {x^{4} \sqrt {c + d x^{4}}}{a + b x^{4}}\, dx \]

input
integrate(x**4*(d*x**4+c)**(1/2)/(b*x**4+a),x)
 
output
Integral(x**4*sqrt(c + d*x**4)/(a + b*x**4), x)
 
3.8.96.7 Maxima [F]

\[ \int \frac {x^4 \sqrt {c+d x^4}}{a+b x^4} \, dx=\int { \frac {\sqrt {d x^{4} + c} x^{4}}{b x^{4} + a} \,d x } \]

input
integrate(x^4*(d*x^4+c)^(1/2)/(b*x^4+a),x, algorithm="maxima")
 
output
integrate(sqrt(d*x^4 + c)*x^4/(b*x^4 + a), x)
 
3.8.96.8 Giac [F]

\[ \int \frac {x^4 \sqrt {c+d x^4}}{a+b x^4} \, dx=\int { \frac {\sqrt {d x^{4} + c} x^{4}}{b x^{4} + a} \,d x } \]

input
integrate(x^4*(d*x^4+c)^(1/2)/(b*x^4+a),x, algorithm="giac")
 
output
integrate(sqrt(d*x^4 + c)*x^4/(b*x^4 + a), x)
 
3.8.96.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^4 \sqrt {c+d x^4}}{a+b x^4} \, dx=\int \frac {x^4\,\sqrt {d\,x^4+c}}{b\,x^4+a} \,d x \]

input
int((x^4*(c + d*x^4)^(1/2))/(a + b*x^4),x)
 
output
int((x^4*(c + d*x^4)^(1/2))/(a + b*x^4), x)